
Behavior Cloning with DJI Drone

Alexander Seto, Noah Shamus, Jun Sung Tak

1 Introduction

Autonomous unmanned aerial vehicles (UAVs) can provide value often in times
where the task is difficult for humans, ranging from emergency situations where
only a drone can get to those in need to overhead surveillance, reaching high
viewpoints that are not practical without an aerial vehicle, optimizing their
flight/actions with statistical methods. Often, hard coded implementations for
UAVs require a relatively high computational power as a series of complex cal-
culations must be computed at rapid speeds. Thus, it is practical to skip the
calculations and implement a reinforcement learning framework to lower the
computational restraint. Currently, there are multitude of techniques in imple-
menting reinforcement learning frameworks that allows the drone to track an
object. The goal of this paper is to explore such frameworks and to identify
the one able to deal with small amounts of data yet complex tasks: thus we
turn to imitation learning. The general idea of imitation learning will be to
have an agent learn an expert policy of operating given a certain state in its
environment. Generally, imitation learning techniques aim to mimic human be-
havior in a given task. This is of great interest because often learning a complex
task can be accelerated by making use of insight about the said task. Imitation
learning instead observes another agent performing task itself and the agent is
programmed to imitate an expert performing the task. As a result, if a com-
plex task can be done by a human, it can also be imitated by an agent, even
without extensive insight into the complex details of the task. In this paper,
a technique called behavior cloning will be employed in an attempt to allow a
drone to imitate an expert policy which tracks a human face.

2 Background Related Work

UAVs have a plethora of practical use cases, from delivery to remote places [3]
to inspection of hard to reach locations in power plants [1]. The preference of
UAVs to vehicles carrying people is straightforward: cost, safety, and size can
all be reasons to choose a drone.

The autonomous aspect has become increasingly relevant as growth in ar-
tificial intelligence’s scalability has allowed deployment of frameworks which
possess the ability to both remove human error and reduce cost from having
someone control the vehicle remotely. Reinforcement learning in particular has

1



Figure 1: Quad-rotor in AirSim environment

become a relevant solution as the environment setup is straightforward and the
amount of uncertainty and skill required to make decisions when controlling a
drone can be addressed through function approximation based upon sensors or
cameras on the vehicle.

Outside of UAVs, the field of reinforcement learning has made strides in
recent years with respect to human aided learning. In [2], the authors present
a method called Advise, which integrates human feedback into the reward, at-
tempting to maximize the effect of feedback, regardless of how scarce or incon-
sistent it is. In this paper, they shape the policy of an agent playing Pacman and
Frogger using advice from a human at each potential position in the game. [6]
also implemented a method where humans assist reinforcement learning frame-
works where instead of directly altering the algorithm/reward, they engineer
multiple tasks, specifically ones where learning the earlier tasks helps the con-
vergence rate/general performance of learning the later tasks. They show that
learning processes can be improved through specific, well thought out engineer-
ing of tasks where the environment is simple in some dimension, showing the
RoboSoccer and Pacman learning agents can be assisted which such curriculum
learning. [4] presents the TAMER framework, a general learning framework
which integrates human trainers, who can guide a learning agent through obser-
vational feedback using a sort of clicker style reward, using statistical methods
to propagate reward from the human to the proper time steps of experience. A
particularly compelling framework is called Apprenticeship Learning, where a
human controls the agent for a given amount of time, and using this experience
given by the human, effectively limiting the search space for approximating the
function, the agent can learn the proper reward function or policy.

2



Finally, DJI Tello is a light-weight UAV produced by DJI. It is controllable
via a remote controller, the Tello app, and a python script utilizing Tello SDK.
Furthermore it is equipped with a HD camera that allows the drone to transmit
digital images to a source. In [7] the author utilizes a single shot multi-box
detector in combination of an OCR algorithm to achieve tracking with the
drone’s on board camera. Coupled with this, we will be implementing apprentice
learning to our agent to introduce an aspect of human feedback within the
learning process. The learning will consist of our agent learning how to best
track a given object by adjusting its velocity and position utilizing Tello SDK.

Behavioral cloning as one of the most basic methods of imitation learning,
where an agent essential tries to clone the policy of an expert. The earliest
instance of behavior cloning in the context of autonomous vehicles can be seen
from work done by [8]. In this paper, a equipped with various sensors learned to
map the sensor inputs to different actions, such as steering angles and accelera-
tion, using behavioral cloning. This was one of the first instances of autonomous
vehicles. The inputs were made into a feature vector. The generated feature
vector was then fed into a neural network to make action decisions.Behavioral
cloning is a simple yet very powerful tool with respect to trying to get an agent
to learn a complex task.

To our knowledge, there are no existing implementations of a light weight
behavioral cloning framework with object tracking drones. Although no formal
evaluation metric is shown in this report, the qualitative results provide evidence
of the robustness of the framework in UAVs.

3 Methodology

In behavioral cloning frameworks, there exists some optimal policy, π*, which
we would like the agent to imitate. For such optimal policy π* we also have a
set of trajectories, D, defined as a sequence of state-action pairs representing the
states the expert saw and the actions they took. This can be seen in Figure 2
where τ represents a single trajectory. Thus, the goal for an agent in behavioral
cloning is to find a parameterized policy, πΘ given parameters Θ which matches
the policy of the expert to the best of its ability. In order to do this, we treat
each state action pair in each τ in our data set D as independently, identically
distributed observations in a supervised learning problem to optimize a model
such that the state is the input for the policy and an action is output. [5]

This can be seen in Figure 3, where it shows how we find πΘ, optimizing
Θ with L as the loss function between the action chosen in the optimal policy
and the output of the parameterized policy of our imitation agent. The loss for
optimizing Θ is one which attempts to match output of the model for a given
state as input with the output of the expert policy for the given state. In a
discrete action setting, this could be a classification problem, entailing a cross
entropy loss but in the continuous action setting, like the one is this project, a
mean squared error loss can be used. Once the policy is optimized on the entire
data set, we deploy our agent by having it run the parameterized policy model’s

3



Figure 2: Definition of terms used throughout project to describe the behavioral
cloning algorithm. [5]

Figure 3: Definition of terms used to describe the dataset in the behavioral
cloning algorithm. [5]

inference in a real world setting [5]. The full algorithm for Behavioral Cloning
can be seen in Figure 4.

Thus, given the environmental constraint of using a DJI Tello drone, we
set out to find an implementation of a hard coded task that we would attempt
to imitate as an expert. There were many existing tasks implemented for the
drone with the DJI Tello Python sdk and OpenCV pre-trained detection mod-
els. We decided to choose a face tracking drone implementation, specifically
the implementation from youngsoul’s tello-sandbox repo on Github [10]. His
implementation essentially worked like this: the python sdk would initialize
drone takeoff, allowing the drone to hover still for a few seconds. Then, the
feed from the camera on the DJI tello drone was fed into numpy arrays where
one of OpenCV’s face detection models extracts the bounding box coordinates
for a face. Based on math including the coordinates of the detected face and
the time passed between face detection, the program would direct the drone in
the corresponding direction such that the face was brought closer to the center
of the frame. Thus, the drone would follow a face respectably, despite the s
processed per second being a measly 5. The math the drone uses specifically is
two proportional-integral-derivative controllers (PID controllers) which essen-
tially are controllers where they continuously track a process, receive feedback
from the environment and attempt to minimize the difference between an op-

4



Figure 4: Definition of goal of the loss in the behavioral cloning algorithm. [5]

Figure 5: Definition of the behavioral cloning algorithm, using terms defined in
writing and previous figures. [5]

timal point and a process variable using this error feedback. Essentially, the
controller uses a weighted sum of the error value, the integral of the error across
time and the derivative of the error with respect to time in order to produce an
updated variable for the monitored process. The logic behind this is that each
term represents the present, past and future of the error value, respectively. A
diagram of a PID controller can be seen in Figure 6 [9].

In our (the expert’s) case, the process variables for the two controllers are
the x and y coordinate of the face and the set point is the x and y coordinate
of the center of the frame, respectively. The drone hence uses a weighted sum
of the integral, derivative and value of the error between the face coordinates
and center of frame coordinates to produce a single update value for both the
left and right and up and down directions.

Figure 6: Diagram explaining the process of PID controllers, note how the
weighted sum from the integral, derivative and error itself is used to update the
process variable., [9]

This task was pretty straight forward to map as a behavioral cloning prob-
lem. Each time a PID controller received feedback it sent a drone control to
change the drone velocity with respect to the left/right movements and the
up/down movements. Thus it is straightforward to encode the action for a

5



given time step as a tuple of float values, representing each velocity change in
the command sent by the PID controller. The feedback it received from the
environment each decision step was an integer x coordinate for the face, an in-
teger y coordinate for the face, and a float value representing the distance of
the face from the last time it saw a face (labelled as d). The value d was only
used by the program to decide whether or not to make an action, so it could
be encoded as a boolean (when it was negative 1 or over 25 it didn’t run an
action, to prevent jitter by the drone). Thus, the state for this problem could
be represented as an array with the feedback the controller received except d as
a boolean value.

Thus, we went on to collect data, done very easily by inserting code right
before an action was sent in the script that ran the implementation such that
we recorded the state action pairs to form a behavioral cloning data set. Sur-
prisingly, a very small amount of data was needed but details about size of data
set will be reserved for the next section.

As for choosing the parameterized model to use as the policy for our drone,
we decided to select linear regression models for each of the left/right and
up/down commands because we felt the relationship between the input and
the actions was simple enough to be modelled by a simple linear model. The
variable used in each respective model was the corresponding coordinate times
the boolean d representation.

After fitting the models, since the drone received the face coordinates in
integer form, we were able to save our results to a python dictionary querying
with the discrete states. Thus, at run time, our script would be nearly identical
to the current implementation except instead of running a PID controller to get
an action, each time it queried our action dictionary with the current state array
serialized into a string. It should also be noted that any action with magnitude
greater than 40 was clipped such that 40 was the max possible action value in
either negative or positive directions.

Thus, our overall procedure was as such: (1) run the tracking script to
collect trajectory csvs, each entry holding the information about the state and
action of the given time step; (2) collect the entries into a single data frame
and fit linear regression models for each of the left/right and up/down actions
using states as input; (3) place the predictions for each possible state (finite
number since all coordinate pairs with in the frame) in an action dictionary; (4)
at drone run time, when face tracking begins, query the dictionary instead of
running the PID controller. As for evaluation, we were not able to formulate
an unbiased, valid quantitative metric to measure the drone’s performance with
each policy because it would be nearly impossible to collect consistent, constant
trials (consistent lighting, face movement, etc.) with the resources we have.
Thus, we resort to qualitative evaluation but this lack of ability to evaluate can
be solved with inverse reinforcement learning or a simulator, to be discussed in
the proceeding section.

6



4 Experimental Results/Technical Demonstra-
tion

Upon the beginning of experimentation, there were initial concerns about how
much data would actually need to be collected to produce a valid policy using
linear models. However, these concerns were quick to dissolve as after each time
we recorded a trajectory, we attempted to fit models and iteratively checked
how much data was necessary. In the end, only two trajectories were needed
before the imitation learner could successfully complete the task. Through
two trajectories, both under a minute, we collected 4850 state-action pairs.
An example of a piece of a trajectory can be seen in Figure 7. objX and
objY represent the coordinates of the face while lr command and ud command
represent the action directions sent by the controller. d represents the distance
between the last face coordinates to the current ones. When no face could be
found, d was -1 but note that the last face’s coordinates remain the same as
they are saved to calculate the next potential value for d.

Figure 7: Example of a portion of time steps for a given trajectory.

Of these 4850 time steps, only 2562 represented time steps the PID controller
sent a velocity change to the drone. This is because of shakiness and/or not
being able to locate a face. This also caused some concern as the data could
potentially be skewed to certain areas of the frame based on how good the face
detection model is. Nevertheless, the actions were enough to fit the models well
enough to run the task, and a summary table of the time steps which were
exclusively actions is shown below in Figure 8. As can be seen, the state space
is limited to integers as well as having finite limits, allowing for discretization
at inference. One can also see the extreme action values having magnitude 40
as this is the maximum speed.

It should be noted that before the coordinate data was used in regression,
the data was centered and normalized to values 0 and 1 for (1) general perfor-
mance boost but primarily (2) to be able to actually get negative outputs from

7



Figure 8: Summary table for all time steps where an action is sent by the PID
controller.

actions (because if coordinate is always positive, the linear model will only be
able to capture an action of a single sign as we use a single coefficient and no
intercept). The linear regression models fit within this paper were implemented
with sklearn’s API, specifically the sklearn.linear model.LinearRegression class.
No intercept was fit for either model as conceptually any time a centered co-
ordinate was equal to 0, the center, the drone should not do anything. The
models were fit by minimizing the residual sum of squares and evaluated us-
ing the mean squared error between their outputs and the true values using
the training set. No validation set was used since we understood overfitting as
important to imitating the expert. Thus, the results can be seen in Figure 9
where a baseline MSE is calculated by taking the MSE between the mean of
the dependent variable’s value for the data set and the actual values. It can be
seen each model significantly outperforms the baseline so we initially could say
that they definitely capture some sort of relevant relationship for capturing the
policy.

Figure 9: Table describing results from the linear regression models for behav-
ioral cloning.

The model formulas are shown as well in Figure 9, where it should be noted
that left and up directions were represented by positive valued actions and the
right and down directions were represented by negative values. As discussed in

8



the previous section, these models were then run for each possible combination
of face coordinates and saved in a python dictionary for inference. At inference,
there was no good way to come up with a metric to evaluate the difference
between the two policies for two reasons: (1) the first being that evaluating
the task was dependent on having consistent trials, meaning each policy is put
through the same exact conditions, nearly impossible without a simulator given
our resources; (2) metrics which measured time or data consumption were heav-
ily biased by the connectivity of the drone, which in turn was affected by its
connection strength, which is hard to keep consistent across trials as well. Thus,
other than the clear boost in time gained from running a python dictionary pol-
icy instead of a PID controller implemented in python, we resort to qualitative
observation between the two policies in practice, described in the next section.
Videos showing the test runs, and thus the data which qualitative evaluation is
made is contained in the videos directory with the submitted code.

Videos of different trajectories are available,

1. Expert trajectory 1: https://youtu.be/GiiVuxKIUsg

2. Expert trajectory 2: https://youtu.be/hz 2azphcK0

3. Agent trajectory 1: https://youtu.be/HF6dQd93MKc

5 Discussion

As discussed above, the discussion section is reserved for the understanding of
qualitative results as well as commentary of potential limitations of our method-
ology.

The two most notable results from experimentation other than straight up
flight performance were inference time and the amount of data it took to train
our learner. Usually, a reinforcement learning agent would need thousands of
episodes in order to understand a task while our agent does it in only two!
Furthermore, upon discretizing the states and querying actions from a dictio-
nary, the policy inference time (essentially the reaction time) was much smaller
(observationally) than in the hard coded expert policy.

It is highly suggested to view the videos linked above before reading this
section. The way to differentiate these videos is best seen in the amount of time
needed to calculate where the drone needs to move. In the expert trajectories,
the drone constantly needs to recalculate its position relative to the face and
center of screen. We see a dramatic improvement with the agent that implements
an imitation learning method in time needed to readjust its position relative to
the face. This is due largely to using a lookup table with a learned policy. All
of this can be evidenced by the relative smoothness of the flight of the drone
compared to the expert trajectories.

To further elaborate, when the expert drone detects that the face is not in
its frame it evidently pauses for a split moment, calculate in which direction and
magnitude it should move and then it makes that move. The resulting trajectory

9



seems rather clunky and slow. This effect is especially evident when the face
being tracked changes position in a drastically matter. The phenomenon is
circumvented with the IL agent trajectory. The flight seems to be smoother and
make faster decisions; however, another problem is introduced. In the expert
trajectory the drone will stop moving when the object is in frame. Thus, if the
object is stationary the drone will hover in place. In the agent’s trajectory, it
tends to overshoot its movements. As an example, when the drone moves to the
right to place the face in frame it moves too much and slowly continue moving
even when the face is in frame. This causes the object to now be on the left side
of the frame and the drone adjusts as such. Even when adjusting, the drone will
overshoot and the same behavior is evident. This causes the drone to oscillate
in a small margin between the frame.

Despite our successful implementation, there are various limitations that
must be mentioned. First, due to limitations of the equipment, various crucial
flight data was inaccessible. As a result determining metrics to evaluate with
was rather tricky. Furthermore, having access to velocity data would have been
beneficial because it can serve as additional state information, adding more di-
mensionality and better representation o our state space. As the PID controller
in the drone utilizes difference of positions over difference in time, with potential
velocity information an imitation learner can utilize functions that can account
for the drone’s overshooting of movement.

Another limitation is the size of our data set. Only 2 trials worth of data
was used to train the agent in this setting. While the performance of the policy
is evident through both video and statistics, increasing the number of trials will
definitely lead to more stable and consistent results. Continuing, the simplicity
of the current model drastically limits certain precise maneuvers, for example
there is a horizontal oscillation when the object is in the frame.

Continuing, a general limitation of the behavior cloning tends to be related to
the MDP assumption. As the previous action in a state induces the next state,
it collides with behavior cloning’s independently identically distributed (often
referred to as the IID) assumption. The effect of this is that error produced
in each state accumulates and could cause the supposed optimal policy to be
ineffective. Furthermore, a learned policy cannot be improved upon due to the
nature of the algorithm.

6 Conclusion and Future work

In conclusion, our implementation exhibited overall success. It was able to
learn the optimal policy from the expert and then further showed qualitative
improvement in performance during flight. The drone appeared to travel in a
significantly smoother trajectory as well. Obviously, using models more complex
than linear models with more information about the state of the drone could
have helped the policy to learn more accurately, but nevertheless, results from
our experiments were definitely respectable.

Further work in this subject also seems incredibly promising. With direct

10



policy learning there could potentially be improvements in various aspects. As
it operates in a loop of expert feedback/demonstrations, agent rolling policy
out in environment, there is a larger quantity of training data. As the agent
iteratively approaches to an optimal policy with each loop, it is able to remember
non-optimal actions and avoid them.

Lastly, another promising direction is inverse reinforcement learning. The
main idea of this approach is to estimate a reward function based on the demon-
strations of the expert. It initially assumes that the first trial of demonstrations
exhibits optimal policy. It then rolls out that policy and then is compared to the
expert’s policy. Finally it updates the reward function based on the comparison
of the two policies. This process is repeated until the found policy meets a
certain threshold. This method is the most comprehensive while also requiring
the largest computational and data resources. One drawback of this method is
that it requires precise data regarding the environment the agent is working in.
While this is could be done with relative ease in a grid world environment it is
drastically more difficult in material settings.

References

[1] Jayme Garcia Arnal Barbedo. A review on the use of unmanned aerial
vehicles and imaging sensors for monitoring and assessing plant stresses.
Drones, 3(2), 2019.

[2] Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles L Is-
bell, and Andrea L Thomaz. Policy shaping: Integrating human feedback
with reinforcement learning. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Infor-
mation Processing Systems, volume 26. Curran Associates, Inc., 2013.

[3] Ghozali Hadi, Rivaldy Varianto, Bambang Trilaksono, and Agus Budiy-
ono. Autonomous uav system development for payload dropping mission.
volume 1, pages 72–77, 01 2014.

[4] W. Bradley Knox and Peter Stone. Interactively shaping agents via human
reinforcement: The tamer framework. In The Fifth International Confer-
ence on Knowledge Capture, September 2009.

[5] Hoang Le, Nan Jiang, Alekh Agarwal, Miroslav Dudik, Yisong Yue, and
Hal Daumé, III. Imitation learning tutorial. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Ma-
chine Learning, volume 80 of Proceedings of Machine Learning Research,
pages 2917–2926. PMLR, 10–15 Jul 2018.

[6] Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. Source
task creation for curriculum learning. In Proceedings of the 15th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AA-
MAS 2016), Singapore, May 2016.

11



[7] Luiz Gustavo Miranda Pinto, Félix Mora-Camino, Pedro Lucas de Brito,
Alexandre C. Brandão Ramos, and Hildebrando F. Castro Filho. A ssd –
ocr approach for real-time active car tracking on quadrotors. In Shahram
Latifi, editor, 16th International Conference on Information Technology-
New Generations (ITNG 2019), pages 471–476, Cham, 2019. Springer In-
ternational Publishing.

[8] Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural net-
work. Technical report, CARNEGIE-MELLON UNIV PITTSBURGH PA
ARTIFICIAL INTELLIGENCE AND PSYCHOLOGY . . . , 1989.

[9] Adrian Rosebrock. Pan/tilt face tracking with a raspberry pi and opencv,
Apr 2021.

[10] Patrick Ryan. Youngsoul/tello-sandbox: Sandbox of scripts and tests pro-
gramming the tello drone in python.

12


